点击上方“Deephub Imba”,关注公众号,好文章不错过 !DQN 用 max Q(s',a') 计算目标值,等于在挑 Q 值最高的动作,但是这些动作中包括了那些因为估计噪声而被高估的动作,素以就会产生过估计偏差,直接后果是训练不稳定、策略次优 ...
2015年DQN在Atari游戏上取得突破性进展,从此以后强化学习终于能处理复杂环境了,但没多久研究者就注意到一些奇怪的现象: Q值会莫名其妙地增长到很大,智能体变得异常自信,坚信某些动作价值极高。实际跑起来却发现这些"黄金动作"根本靠不住,部分游戏的 ...