Kernel density estimation (KDE) and nonparametric methods form a cornerstone of contemporary statistical analysis. Unlike parametric approaches that assume a specific functional form for the ...
This paper characterizes the bandwidth value (h) that is optimal for estimating parameters of the form $\eta = E[\omega /f_{V|\mathbb{U}} (V|\mathbb{U})]$ , where the conditional density of a scalar ...
Gordon Lee et al introduce a data-driven and model-agnostic approach for computing conditional expectations. The new method combines classical techniques with machine learning methods, in particular ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果
反馈