South Korean researchers have developed a guided-learning framework that accurately predicts PV power without requiring irradiance sensors during operation, using routine meteorological data instead.
For example, a Convolutional Neural Network (CNN) trained on thousands of radar echoes can recognize the unique spatial signature of a small metallic fragment, even when its signal is partially masked ...
A deep learning framework combines convolutional and bidirectional recurrent networks to improve protein function prediction from genomic sequences. By automating feature extraction and capturing long ...
机器学习和深度学习的最新进展为处理复杂的雷达和光学数据开辟了新的可能性。通过在信号处理链中引入基于人工智能的层,系统可以增强对微弱信号的检测,滤除噪声和大气干扰。人工智能可以识别和分类轨道物体,识别与形状、自旋状态或轨道状态相对应的模式,并且可以更准确地预测轨迹和潜在碰撞,即使在观测数据不完整或不确定的情况下也是如此。
肉眼可能无法察觉,但在地球轨道上,一场无声的危机正在蔓延。目前有超过11000颗在轨运行的卫星,预计到2030年,这一数字将达到3万到6万颗。此外,还有40500个被追踪的、尺寸大于10厘米的物体,110万个尺寸在1到10厘米之间的太空碎片,以及1.3亿个尺寸在1毫米到1厘米之间的太空碎片,我们的轨道基础设施正面临前所未有的挑战。传统空间监测系统是为空间活动远没有如此复杂的时代设计的,已经难以跟上 ...