Quantum modular forms have emerged as a versatile framework that bridges classical analytic number theory with quantum topology and mathematical physics. Initially inspired by the pioneering work on ...
Modular forms provide a powerful mathematical framework for understanding symmetry in two-dimensional quantum field theories. In conformal field theory (CFT), these holomorphic functions obey ...
Recently, Bruinier, Kohnen and Ono obtained an explicit description of the action of the theta-operator on meromorphic modular forms f on SL₂(Z) in terms of the values of modular functions at points ...
In this paper, we prove that if the Fourier coefficients of a vector-valued modular form satisfy the Hecke bound, then it is cuspidal. Furthermore, we obtain an analogous result with regard to Jacobi ...
We preselected all newsletters you had before unsubscribing.
一些您可能无法访问的结果已被隐去。
显示无法访问的结果