想象一下,当你写代码时,打开了好几个Claude Code对话,分别负责前端、后端、测试和报错处理,并在AI犯错时及时纠正、将规则固化。你把AI当成一个“人”而非辅助工具来协作。久而久之,它是否可能成长为熟知你团队工作流的“老员工”?
Reducing technical debt manually can be a time-consuming, never-ending process. Use tools to automate the process. The post ...
Strip the types and hotwire the HTML—and triple check your package security while you are at it. JavaScript in 2026 is just ...
Build your Java skills from the ground up by working on simple tasks and beginner-friendly projects. Challenge yourself with more complex Java problems, including those focused on multithreading and ...
在数字化浪潮席卷全球的当下,信息安全已成为企业发展的核心命脉。据统计,2024年全球因信息安全漏洞导致的经济损失超8.45万亿美元,其中移动应用(APP)漏洞占比达37%,代码缺陷引发的攻击事件同比增长22%。面对日益复杂的安全威胁,企业亟需一套覆盖全生命周期的信息安全评估体系,而 格修科技(北京)有限公司 凭借其在 ...
For more than two decades, Gameloft SE has been at the forefront of mobile and digital gaming—evolving from a bold startup to ...
Labor unions have argued in a series of protests against the Jakarta administration that this year’s city minimum wage of Rp ...
An environmental NGO has called for an overhaul of the sector after at least 15 artisanal gold miners were killed in ...
By Karyna Naminas, CEO of Label Your Data Choosing the right AI assistant can save you hours of debugging, documentation, and boilerplate coding. But when it comes to Gemini vs […] ...
LLM-in-Sandbox 提出了一个简洁而有效的范式:通过给大模型提供一台虚拟电脑,让其自由探索来完成任务。实验表明,这一范式能够显著提升模型在非代码领域的表现,且无需额外训练。 研究者认为, LLM-in-Sandbox 应当成为大模型的默认部署范式 , 取代纯 LLM 推理 。当沙盒可以带来显著的性能提升,并且部署成本几乎可以忽略不计时,为什么还要用纯 LLM?